INFLUENCE OF DIGITALIZATION AND ERGONOMICS ON SHIP CREW BEHAVIOR IN SAFETY MANAGEMENT SYSTEM IMPLEMENTATION: ANALYSIS BASED ON 2025 SHIP ACCIDENT CASES
Keywords:
Crew Behavior, Digitalization, Ergonomics, Maritime Accidents, Safety Management SystemsAbstract
This research investigates the influence of digitalization and ergonomics on ship crew behavior in Safety Management System (SMS) implementation within ship machinery departments, analyzing 2025 maritime accident cases to derive evidence-based insights. Despite comprehensive SMS frameworks mandated by International Safety Management Code, maritime accidents continue occurring, with human factors and crew behavior constituting primary contributing factors in 75-85% of incidents. Through qualitative analysis examining accident investigation reports, interviews with maritime safety experts, ship operators, crew members, and human factors specialists, this study explores how digital technologies and ergonomic design affect crew safety performance, decision-making, and SMS compliance. Results demonstrate that well-designed digitalization enhances situational awareness and procedural compliance by 35-50%, while poor ergonomic design increases error rates by 40-65% through fatigue, cognitive overload, and interface usability problems. Key findings reveal critical gaps between SMS theoretical frameworks and operational realities, particularly regarding human-technology interaction design, workload management, and organizational safety culture. This research contributes to maritime safety literature by providing empirical evidence linking digitalization design quality, ergonomic factors, and crew safety behavior, offering practical frameworks for human-centered SMS implementation that recognizes crew as central actors whose behavior determines safety outcomes
Downloads
References
Buddha, H., Shuib, L., Idris, N., & Eke, C. I. (2024). Technology-assisted language learning systems: A systematic literature review. IEEE Access, 12, 27645-27668. https://doi.org/10.1109/access.2024.3366663
Caldas, P., Pedro, M. I., & Marques, R. C. (2024). An assessment of container seaport efficiency determinants. Sustainability, 16(11), 4427. https://doi.org/10.3390/su16114427
Chae, G.-Y., An, S.-H., & Lee, C.-Y. (2021). Demand forecasting for liquified natural gas bunkering by country and region using meta-analysis and artificial intelligence. Sustainability, 13(16), 9058. https://doi.org/10.3390/su13169058
Du, S., Zhang, H. S., & Kong, Y. (2023). Sustainability implications of the Arctic shipping route for Shanghai port logistics in the post-pandemic era. Sustainability, 15(22), 16017. https://doi.org/10.3390/su152216017
Hu, T., & Chen, H. (2023). Identifying coastal cities from the perspective of "identity-structure-meaning": A study of urban tourism imagery in Sanya, China. Sustainability, 15(21), 15365. https://doi.org/10.3390/su152115365
Jian-ping, S., Fang, C., Chen, Z., & Chen, G. (2021). Regional cooperation in marine plastic waste cleanup in the South China Sea region. Sustainability, 13(16), 9221. https://doi.org/10.3390/su13169221
Kim, B., Kim, G., & Kang, M.-H. (2022). Study on comparing the performance of fully automated container terminals during the COVID-19 pandemic. Sustainability, 14(15), 9415. https://doi.org/10.3390/su14159415
Kim, S.-K., Choi, S., & Kim, C. (2021). The framework for measuring port resilience in Korean port case. Sustainability, 13(21), 11883. https://doi.org/10.3390/su132111883
Liao, Y.-H., & Lee, H.-S. (2023). Using a directional distance function to measure the environmental efficiency of international liner shipping companies and assess regulatory impact. Sustainability, 15(4), 3821. https://doi.org/10.3390/su15043821
Mwendapole, M. J., & Jin, Z. (2021). Evaluation of seaport service quality in Tanzania: From the Dar es Salaam seaport perspective. Sustainability, 13(18), 10076. https://doi.org/10.3390/su131810076
Paridaens, H., & Notteboom, T. (2021). National integrated maritime policies (IMP): Vision formulation, regional embeddedness, and institutional attributes for effective policy integration. Sustainability, 13(17), 9557. https://doi.org/10.3390/su13179557
Pian, F., Xu, L., Chen, Y., & Lee, S.-H. (2020). Global emission taxes and port privatization policies under international competition. Sustainability, 12(16), 6595. https://doi.org/10.3390/su12166595
Qi, J., Wang, S., & Zheng, J. (2022). Shore power deployment problem—A case study of a Chinese container shipping network. Sustainability, 14(11), 6928. https://doi.org/10.3390/su14116928
Yao, Y., Zheng, R., & Parmak, M. (2021). Examining the constraints on yachting tourism development in China: A qualitative study of stakeholder perceptions. Sustainability, 13(23), 13178. https://doi.org/10.3390/su132313178
Zhang, W., Zhang, Y., & Qiao, W. (2022). Risk scenario evaluation for intelligent ships by mapping hierarchical holographic modeling into risk filtering, ranking and management. Sustainability, 14(4), 2103. https://doi.org/10.3390/su14042103
Zhou, K., Yuan, X., Guo, Z., Wu, J., & Li, R. (2024). Research on sustainable port: Evaluation of green port policies on China's coasts. Sustainability, 16(10), 4017. https://doi.org/10.3390/su16104017
Downloads
Published
Issue
Section
License
Copyright (c) 2026 I Made Mariasa, Irfan Faozun, Chanra Purnama, Natanael Suranta, Ferro Hidayah, Pesta Veri A. N (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

